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 ～ March 2011 NEC Research Laboratories
◼ Parallel processors, near memory computing

◼ Dynamically reconfigurable processor (DRP)

 ～ March 2019 Hokkaido University
◼ Reconfigurable, near/in-memory accelerators 

for AI computing

 April 2019 ～ Tokyo Tech
◼ Artificially Intelligent 

Computing Research Unit 

◼ => ArtIC (<= Art of IC)

◼ In Yokohama

Introduction: Myself and Our Group (ArtIC@Tokyo Tech)

Greater Tokyo Area

1 Hour

Downtown 
TokyoPart 1 (Brief Overlook)

Part 2 (A Bit In Depth)

Tokyo Tech 
Suzukakedai
(Yokohama) 

Campus

FPT 2023
We are Here

ArtIC Members
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Part 1: Dynamically Reconfigurable 
Processor (DRP)
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DRP Research Started Around 2000

An Accelerator IP core 
in an SoC 

Filling the gap between 
CPU and hard-wired logic
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DRP: 1st Presented at Microprocessor Forum 21 Years Ago

Guess Who He is…

… Long Story, Hmm
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Processing Element (PE)

◼Byte-oriented ALUs

◼Byte-width X/Y buses and registers

◼Several tens of configuration sets

State Transition Controller (STC)

◼Controls “dynamic reconfiguration”

Data Memory (Mem)

◼Dual port

◼Single port

16b Multiplier (MPY)

DRP Features Tiled CGRA Architecture

CGRA: Coarse Grained Reconfigurable Array
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j-1th line
buffer

Jth line
buffer
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pn(i , j)

p(i , j+1) p(i-1 , j+1)

p(i+1 , j)

p(i , j)
p(i-1 , j)

p(i+1 , j-1)p(i , j-1)

control

for( i = 0; i < N; i++ ){

for( j = 0; j < N; j++){

f(i, j) = 5*f(i, j) – f(i, j-1) – f(i-1, j)

– f(i+1, j) – f(i, j+1);

}

}

Example: 3x3 Filter

DRP Compiler

1.Generates a HW configuration 
context from the source code

2.Spatially maps onto the array

Source Code 

in C-langage

Execution Model (1): Spatial Mapping

DRP Array

+

+ *

+ -
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DP #7

DP #6

DP #5

DP #4

DP #3

DP #2

DP #1

Finite state machine
(FSM) + datapath

DRP Compiler

Source Code
in C-language

STC

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE
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PE PE PE PE PE PE PE PE
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Mem Mem Mem Mem

Mem Mem Mem Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

MPY MPY MPY MPY

MPY MPY MPY MPY

Architecture

１

DP #1DP #3DP #4DP #5

DP #1DP #3DP #4DP #5

1

2

3

4

5

6

7

３ ４ ５

State by State 
Reconfiguration

DP #1

DP #1

Reconfiguration time: 
Hidden behind datapath operation

High-Level
Synthesis based on 

CWB* Tool &  
Technology Mapping

Execution Model (2): Temporal Sequencing

Switch among several 
tens of HW contexts 

cycle by cycle
*CWB: CyberWorkBench
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Spatial
-then-

Temporal
Computing

Temporal
-then-
Spatial

Computing

Temporal
Computing

Spatial
Computing

Putting DRP in Execution Model Landscape

Spatial
Execution

Temporal
Execution

Spatial Execution

1st

Priority

2nd Priority

Temporal Execution

DRP represents a 
Spatial-then-Temporal

CGRA with FSM-
Controlled Dynamic

Reconfiguration

Single 
Processor

Multi-Core
Processors

ILP/TLP
Processors

FAQ: 
Is a diagram like 
this a multi-core 
processor or a 
CGRA* Core?

The answer lies in 
its execution 

model

CGRA

DRP

Recon-
figurable

Computing

FPGA

*Coarse-Grained Reconfigurable Array 
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Putting DRP in Execution Model Landscape – In 3D

Temporal Computing

S
p

a
ti

a
l 
C

o
m

p
u

ti
n

g

Multi-
Processors

Single
Processor

Its Cycle by Cycle
Datapath

Context Switch
is for 

Hardware
Virtualization

DRP is a Spatial-then-
Temporal CGRA with

FSM-Controlled Dynamic
ReconfigurationHard-Wired

Logic

FPGA

Partial-Reconfiguration
/Multi-Context

FPGA
DRPProgramm.

Connection

Processing 
Element (PE)
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Recent Evolution: DRP-AI for Neural Networks

Slide 11

Now used in Renesas’s MCU/MPU products. 
Total shipment of DRP chips is still rapidly expanding!
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DRP-AI Demo & Its New Gen. Exposure at ISSCC 2024

Slide 12
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Power Performance 
Comparison

A社 Renesas

GPU DRP-AI

GPU DRP-AI
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Note:
- The benchmark uses the power consumption of the entire board and inference time 

without pre and post process.
- Measured by Batch size=1 and FP16 Quantization.
- TensorRT7 is applied for Competitor A measurement.

GPU DRP-AI



13

DRP: Early-Coming/Ever-Evolving in SDH/SDC Movement

DRP’s Spatial-then-Temporal Processing Style
Lead me to the Structure-Oriented Computing Concept

* Software Defined Hardware/Chip
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Part 2: AI Computing 
- Algorithm, Architecture, Real Chip



15

AI’s Energy Problem

Autonomous 
Drones

Generative AI
for Text/Image

Smart 
Robotics

- Serious Concern -
Its energy consumption and environmental impact

Smart Social
Infrastructure

AI Technology is Now Omnipresent in Our Society
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What Do We Know About It?

（AI Index Report 2023)

（IEEE Spectrum 2023)（Stanford Report 2023)

Simply, Way Too Much
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And … What We Can Do About It?

Hence

We Should Make AI Computing 
Several Orders of Magnitude

More Energy Conscious

ー It is already an unrealistic option ー

（Forbs 2023)

Refrain from 
using it?
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Answer: 

Interplay Among 

Algorithm-Architecture-Real Chip

But, How?

Answer: Interplay Among Algorithm-Architecture-Real Chip

Real
Chip

Innovative
Algorithm

Innovative
Architecture

Algorithm
（Ex: NN Model)

Architecture

Workload Characteristics



19

Observation: AI Computing Landscape

It is All About How to Handle Large-Volume Inputs and Outputs

Classify Detect Recognize  Predict Generate Recommend    Decision Make

Computers

Explosion
of Solutions

Explosion
of Data

Input Output

 Traditional ML

 Deep NeuralNets

 Reservoir Computing

 Discrete Optimization

 Annealing Computation

 Graph Processing
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Deep NeuralNets: DNNs

W1
W2

Wｎ

I1

I2

Iｎ

ＯFΣ

Neuron

Synapse

Ｏ = F(W1I1 + W2I2

+ … + WｎIｎ)

Nonlinear
Function

Network Structure

Annealing Computation

Energy Function Having Lots of Local Minimums

Traverse the 
Energy Surface and 

Find a Minimum

Design the Energy 
Funciton by Back 

Propagation

Traverse the 
Energy Surface and 

Find a Minimum

E = ΣJijSiSj - ΣhjSjij j

Spin Energy Function
J12

S1 S2

S4 S5

J25

J14

J45

E
n
e
rg

y

State Space

Problem 
to

Solve

RepresentationMapping

Network Structure

AI Computing: Driven by Energy Minimization Principle

Inf.

Our Goal: Establishing Common 
Parallel Architectural Ground 

for those workloads

Train
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EDSAC

- Program a Sequence
- Serial in its nature

1949

ALU

Mem

Newly Rising: Structure-Oriented

Data-Flow Processing
Reconfigurable HW

ENIAC

- Program a Structure
- Parallel in its nature

1946

ALU

ALU

ALU

Manual
Re-wiring

ALU

ALU

Traditional Computing AI Computing
Augmenting
Each Other

Paradigm
Shift
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Conventinal: Sequence-Oriented

Control-Flow Processing
Von Neumann Processor

Architectural Shifts from Sequence to Structure
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Analogy: bit Dangerous yet Potentially Useful

Logical-Arithmetical
Information Processing

Can Exceed human brain’s 
energy efficiency by 

architectural innovation

Sequence-Oriented 
Computing is Efficient

Far beyond Energy Efficiency 
of human brain on such 

computing tasks

Intuitive-Spatial 
Information Processing

Structure-Oriented 
Computing is Efficient

[Left Brain]
Sequence-Oriented Engine

[Right Brain]
Structure-Oriented Engine

Toward Robust and Efficient AI Computing Platform

(Pinterest)
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Real World Example: Tenstorrent

Mix of Sequence-Structure Strategy Depends on Each Architecture 

Finding the best mix－on each side－is the heart of architecture design

[Left Brain]
Sequence-Oriented Engine

[Right Brain]
Structure-Oriented Engine
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 Binary/Ternary DNN Accelerator
◼ Presented at the VLSI Symposium 2017

 Log-Quantized DNN Accelerator with 3D-Integrated SRAM
◼ Presented at the ISSCC 2018

 Fully-Connected Fully-Parallel Digital Annealing Engine
◼ Presented at the ISSCC 2020

 Shift-Oriented Cartesian-Product Array DNN Inference Accelerator
◼ Presented at the Hot Chips 2021

 Fixed-Random-Weight DNN Inference Accelerator
◼ Presented at the ISSCC 2022

 Metamorphic Annealing Engine for Fully-Connected Models
◼ Presented at the ISSCC 2023

 Progressive-bitwidth DNN Inference Accelerator
◼ Presented at the VLSI Symposium 2023

Showcase: AI Computing Chips of Our Own

65nm

40nm

65nm

40nm

40nm

40nm

40nm

DNN Chips

Annealing Chips
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Lottery Ticket Hypothesis

Dense Trained
Network

Random Sparse
Network

Lottery Ticket Hypothesis

Equivalent
Inference
Accuracy

[J. Frankle+, ICLR 2019]

F
o

rw
a

rd

Existence of subnetworks

How do we find?

Hidden Network (HNN)
[V. Ramanujan+, CVPR2020]

Algorithm to find a subnetwork!

AND

Score

Supermask

Weight

Gradient

Edge-popup algorithm

Not update weights but scores

Back prop.
Score

∈Top-k% ?
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Hidden Networks (HNNs): Strong Lottery Ticket Theory 

Dense Trained
Network

Random Sparse
Network

Lottery Ticket Hypothesis

Equivalent
Inference
Accuracy

Existence of subnetworks

Hidden Network (HNN)
[V. Ramanujan+, CVPR2020][J. Frankle+, ICLR 2019]

Algorithm to find a subnetwork!

AND

Score
∈Top-k% ?

Score

Supermask

Weight

How do we find?

F
o

rw
a

rd

Gradient

Edge-popup algorithm

Not update weights but scores

Back prop.
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HNN Utilizes Fixed Random Weights

◼ Fixed at initial random numbers

☺ Weights are no longer variables 

but are (random) constants

◼ Binary weights {-1, +1} show 

better accuracy than multi-bit 

weights

☺ Enhance computation 

efficiency

AND

F
o

rw
a

rdSupermask

Weight

Inference Model

[V. Ramanujan+, CVPR2020]
Multi-bit WeightBinary Weight

+c-c

STDev = c

Freq.

Value

50

60

70

Accuracy on HNN
(ResNet50, ImageNet)[%]

A
c
c
u

ra
c
y

Freq.

Value
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HNN Needs a Supermask

◼ A supermask is binary {0, 1} 

information for selecting 

connections

 Conventional NNs do not

need supermask

☺ A supermask provides 

the trade-off between 

accuracy and sparsity

A
c

c
u

ra
c

y

AND

F
o

rw
a

rdSupermask

Weight

Inference Model

60

65

70

75

0 20 40 60 80 100

Trade-off

ResNet50, HNN, ImageNet

Sparser model
Top-k% of Weights

Top-30%
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1. On-chip weight generation

⚫ eliminates the need for  

storing and loading weights

2. On-chip supermask expansion

⚫ reduces the model parameters to load

3. A high-density 4D parallel processor

⚫ improves efficiency by maximizing data re-use

Key Contributions of This Work

The first HNN inference chip,

Hiddenite:
Hidden Network Inference Tensor Engine

On-chip model construction

AND

F
o

rw
a

rdSupermask

Weight

Inference Model

[*] https://en.wikipedia.org/wiki/Hiddenite

[*]
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Overall Chip Architecture

iA
ct

4D PE Tensor

with 4K PEs

16 (iCh) x 4x4 (HxW) x 16 (oCh)

Supermask Expansion

Unit (SEU)

Weight Generation

Unit (WGU)

Supermask

Weight

Activation

Memory

(AMEM)

8Mb

Seed

2D

Barrel

Shifter
(2D BS)

iA
ct

P
S
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Post

Proc.

Unit

(PPU)

Encoded 
Supermask

o
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t

CTRL
Model

Construction
Controller (MCC)

Next Slide

Seed

RNG

Weight

1.

2. ZRL-Encoded
Supermask

↓
Decoded

Supermask

PSUM 

= Σ{(iAct and Supermask) x Weight}

3.

PE is so tiny!Binary
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4D PE Tensor: Dataflow

4D PE Tensor

P
E
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ix

PE 
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PE 
Vector

PE 
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PE 
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PE 
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PE 
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PE 
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PE 
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PE 
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H
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16 oChs

PE PE PE

16 iChs

iAct
(8-bit)

16 iChs

Supermask
(1-bit)

Weight
(1-bit)

16 iChs

16 iChs

+

16

8

PSUM

Sign 
Inversion

iAct SMaskWeight

8

Data gating

PE Vector PE

PSUM = Σ{(iAct and Supermask) x Weight}
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Generating RNG Seeds by Hashing
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Random
Seed

Hashed
Seed

Binarized
Weight

0.42 0.0024.3
-98.2% -100%

Data Size for Weight*

A
c

c
u
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c

y
 [

%
]

Random
Seed

PyTorch
Default

Xorshift16

Accuracy

74.66 74.60 74.67
73

74

75

76

Default Xor16 Xor16

ResNet18, CIFAR-100, Top-30%

Equivalent accuracy

Hashed
Seed

Training

Inference

76
75
74
73

◼ Hashed seeds eliminate the need

to store weights without accuracy degradation

* Supermask will be explained later 
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Total External Memory Access Reduction

ResNet50, ImageNet, Top-10%

8Mb AMEM & Sliced Layer-Fusion

On-chip 
Weight Generation

[x105]

On-chip 
Model

Construction
On-chip

Supermask
Expansion

-76.5%

-48.0%

-45.9%
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16.6
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w/ WGU w/ SEU

◼ Hiddenite drastically reduces power-consuming 

external memory accesses
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62
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0 10 20 30 40 50 60 70

Accuracy vs. Model Size on ImageNet

◼ Comparable or better accuracies

◼ Smaller model size than binary model

60
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64
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68

70
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10%
70%

Top-20%
-60%

-46%

-42%

5%
70%

-57%

* [V. Ramanujan+, CVPR2020]

** [J. Faraone+, CVPR 2018]

⚫ HNN (w/ distillation)

⚫ Original HNN

(w/o distillation) *

⚫ Binary **

⚫ Ternary **

ResNet50 VGG16

Top-30%

Compressed model size [Mb]
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y
[%

]
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Hiddenite Chip Summary

Technology TSMC 40nm CMOS (LP)

Package QFN80 (48 Signal Pins)

Chip Size 3mm x 3mm

Core Area

SRAM: 3.78mm2

Logic: 0.58mm2

Total: 4.36mm2

Core VDD 0.8-1.1V

I/O VDD 3.3V

Gate Count 746K Gates

SRAM

AMEM: 8Mb

SMEM: 256kb

ZMEM: 128kb

Total  : 8.375Mb

AMEM

ZMEM
SMEM

SMEM

Logic

AMEM

AMEM

AMEM

AMEM

AMEM

AMEM

AMEM

AMEM

AMEM

Micrograph Specification Table



36

Measured Results on ImageNet
T
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 [
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z
]

Voltage [V] Voltage [V]

ResNet50 VGG16

Top-10%

Top-20%

Top-30%

◼ Efficiency on ResNet50: 18.2-to-16.0TOPS/W at 0.77V

◼ Maximum frequencies:  614-to-573MHz at 1.1V
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What Hiddenite Has Achieved ?

◼ Hiddenite is the first HNN inference chip

◼ Drastically reduce external memory access by

⚫ On-chip model construction 

− On-chip weight generation

− On-chip supermask expansion

⚫ Slice-based layer-fusion processing

◼ SOTA accuracy relative to model size by score distillation

◼ SOTA-level computation efficiency

H
id

d
e

n
it

e

2D BS PPU

CTRL

AMEM

MCC

PE Tensor

SEU

WGU

We also presented a new Strong Lottery Ticket
training algorithm at ICML 2022.

“Multicoated Supermasks Enhance Hidden Networks”

Algorithm

Architecture

Real Chip
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 Binary/Ternary DNN Accelerator
◼ Presented at the VLSI Symposium 2017

 Log-Quantized DNN Accelerator with 3D-Integrated SRAM
◼ Presented at the ISSCC 2018

 Fully-Connected Fully-Parallel Digital Annealing Engine
◼ Presented at the ISSCC 2020

 Shift-Oriented Cartesian-Product Array DNN Inference Accelerator
◼ Presented at the Hot Chips 2021

 Fixed-Random-Weight DNN Inference Accelerator
◼ Presented at the ISSCC 2022

 Metamorphic Annealing Engine for Fully-Connected Models
◼ Presented at the ISSCC 2023

 Progressive-bitwidth DNN Inference Accelerator
◼ Will present at the VLSI Symposium 2023

AI Computing Chips from Our Group

65nm

40nm

65nm

40nm

40nm

40nm

40nm

DNN Chips

Annealing Chips
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Combinatorial Optimization Appears Everywhere

NP Hard: Notoriously Difficult for Present Computers 

Logistics

Drug Discovery

Traveling Salesman

Graph Mining

Finance

Portfolio Optimization

Problem Size

C
o
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p

u
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o

n
 T

im
e

Machine Learning

Hyperparameter Opt.

???

City

Cost 1 3

2

3

5

2

7

3 5

8

A

B

C D

E

e.g., 

Traveling 

Salesman 

Problem

Combinatorial Explosion



40Annealing: Optimization based on Ising Models 
(Inspired by Solid-State Physics)

Jxy : Interaction Weight

σx : Spin (Binary Value) 

Ising

Model

Combinatorial

Optimization Problem

Finding Ground-States (i.e., Minimum Energy) of (Potentially) 

Fully-Connected Ising Models

Energy (Cost)

State Space

Ground 

State

Initial

State

Optimal

Solution

Solution

Input : J Output : σ

σ1

J12
J25

J13
J24 J35

J14
J45

J34

J23

J15σ2

σ3 σ4

σ5

Annealing Processor+

1

-1
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Serial and Parallel Annealing Policies 

◼ SCA[6] fromcan realize O(N) times faster spin update than SA

Update

Update

Update

Update

SA: Simulated Annealing SCA: Stochastic Cellular Automata Annealing

Step #1

#2

#3

#4

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a
te

Step #1 #2
#5–8

N: #Spins

N step 

serial update

Our Proposal (ISSCC 2020)Traditional Method
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Comparison of Annealing Algorithms

Random Select

Flip?

Flip?

Random Select

Flip?

Through

Flip?

Apply Prob. 𝜺

SA DA[Fujitsu] RPA**SCA*

Single

Flip Trial

Serial Spin Update Parallel Spin Update

Parallel Flip Trial

2020                      2023
Our Proposal

* Stochastic Cellular Automata Annealing

** Ratio-controlled Parallel Annealing
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Motivation for Applying Multi-Annealing Algorithms

◼ Optimal policy depends on the Ising model (i.e., Problem to solve)

⚫ RPA works better for the most cases

⚫ DA is better for Ising models having many negative couplings

𝝈1

J1y

J1x

Example: 128-spin Ising models

𝑱𝒙𝒚 ∈ +𝟏,−𝟏, 𝟎

𝝈2

𝝈128

𝝈x

𝝈y

J2x

J2y

Pos. coupling (Jij = +1) ratio

N
e
g

. 
c
o

u
p

li
n

g
 (

J
ij

=
 −

1
) 

ra
ti

o

Compare avg. Ising energies of SA, DA, SCA, and RPA

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fully-

Coupled
SA is better

DA is better

SCA is better

RPA is better

Tie

Dense Simulation settings

⚫ #trials = 128

⚫ #steps of each trial = 20,000
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Local 

Field 

Units

(LFUs)

Delta 
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Units

(DCUs)

Multi-
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(MPDS)

JiN
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Ji2
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J(1)ij J(2)ij J(C)ij

Weight Memory (WMEM) Local Field Buffer 𝜟 & 𝝉 Buffers 3D-Matrix 𝝈 Buffer

C⨉ N
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N

𝝈N

𝝈1

𝝈2
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RRR

From CTR
i
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From CTR

Ext I/F

DMA
Controller (CTR)

Data Memory (DMEM)

Instruction Memory (IMEM)

Busy

Run

Data

Ctr

32
Zero-Run-Length Decoder (ZRLD)

Decoder Decoder

Double 𝜟 Buffers

Data-path

Legend

Amorphica: Metamorphic Annealing Architecture

◼ Near Memory, Fully Spin-Parallel Architecture

◼ SA/DA/SCA/RPA algorithms are applied with dynamic reconfigurability

◼ Very close to what Binary Neural Network (BNN) Inference Chip looks

Memory

Datapath for
a single spin

N-Spin 
Parallel

Processing

Spin Flip
Processing
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Amorphica Chip Summary

Technology TSMC 40nm CMOS (LP)

Package QFN80

Chip Size 3mm x 3mm

Core Area
SRAM: 3.55mm2

Logic:  1.48mm2

Core VDD 0.8-1.1V

I/O VDD 3.3V

Max Freqency
336MHz@1.1V

134MHz@0.8V

Gate Count 1.2M Gates

SRAM
WMEM: 8Mb

IMEM: 64Kb

DMEM: 64Kb

Total: 8.125Mb

Micrograph Specification Table
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Comparison to GPU (Nvidia RTX2080-Ti)

◼ Up to 58x speed up can be achieved, with around 1/500 power 

consumption. That is, 30k times more energy efficient.

≈ 250W

< 500mW

Time to obtain Ising energy that is 99% to the best 
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Key Contributions of This Work

1. RPA: Ratio-controlled 

Parallel Annealing

2. Metamorphic, Near-Mem 

Annealing Architecture
3. Multi-chip Extension

𝝈1 𝝈2 𝝈N

Spin Update 

Logic

Jij

Algorithm D

Algorithm C

Algorithm B

Algorithm A

4. Chip Implementation 

and Evaluation

Chip

#1

Chip

#4

Chip

#2

Chip

#3

#1

4-chip Annealing System 

#2

#4 #3

MCC

Algorithm

Architecture

Real Chip
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Wrap Up The Two Showcases

They all feature

 Reduced-Bitwidth

 Near-Memory

 Element-wise Parallel

Reconfigurable Structure-
Oriented Computing

This type of architectures will 
play pivotal rolls in near 

future AI Computing systems
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Local
Memory

Communication Network

Fixed
Function

Cores

Stand.
I/O

Memory
Contr.

GPUCPU

DNN
Engine

Anneal
Engine

Tree/
List/
Graph
Engine

Sparse
Engine

Vision: SoCs/SiPs for the Smart-X Society

SoC (System on Chip), SiP (System in 
Package) for Smart-X Systems, e.g.,

 Mobile Devices

 Mobilities

 Wearable Devices

=> Ensemble of Domain-Specific Engines

This vision explains why we 
value real chip implementation 
(as opposed to using FPGAs)

… on some common low-bitwidth

reconfigurable and parallel 

architecture foundation.

General SoC/SiP View

Test
Chip

Test
Chip

FPGA
Proto

FPGA
Proto

Not Covered 

in This Talk

Covered 

in This Talk

ASP-DAC
2024

FCCM
2023

ISSCC
2022

ISSCC
2023

Domain Specific Cores
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Answer: 

Interplay Among 

Algorithm-Architecture-Real Chip

Key Takeaways

Real
Chip

Innovative
Algorithm

Innovative
Architecture

Algorithm
（Ex: NN Model)

Architecture

Workload Characteristics

Importance of the Interplay Among Algorithm-Architecture-Real Chip



51Many Thanks to Collaborators!
Questions ?
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 CGRA boom in late 90’s to 00’s
◼ Lots of academic projects and 

startups
 Pipe-Rench, Chameleon, IP-flex, etc.

◼ Most of them “Hyped-out” 

 Dynamically

Reconfigurable

Processor (DRP)

started by NEC,

succeeded by 

Renesas

CGRA: Past and Present
Gartner Hype Cycle 2003

DRP alone survived and continued 
its growth, and is now glowing 

beyond the age of 20th!
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Challenges of Full-connection Annealing Processors

𝝈1

𝝈2

𝝈3 𝝈4

𝝈5

J13

J12

J45

N-spin Ising model

# coupling weights = N(N−1)

1. Limited Flexibility

2. Limited Scalability
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Challenges of Full-connection Annealing Processors

𝝈1

𝝈2

𝝈3 𝝈4

𝝈5

J13

J12

J45

N-spin Ising model

# coupling weights = N(N−1)

1. Limited Flexibility

2. Limited Scalability

Fujitsu: Digital Annealer Our Group: ISSCC 2020

vs.
Serial

Spin-Update 

Policy

Parallel
Spin-Update 

Policy

Slow Need Extra Ctrl

Trade-off between speed & stability

→ Which policy is Superior?
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Challenges of Full-connection Annealing Processors

𝝈1

𝝈2

𝝈3 𝝈4

𝝈5

J13

J12

J45

N-spin Ising model

# coupling weights = N(N−1)

1. Limited Flexibility

2. Limited Scalability

Full-connection 

Network

Full-connection 

Network

Chip #1 Chip #2

Large 

comm. cost

Multi-chip Distributed Annealing


