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DRP Research Started Around 2000
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DRP: 1st Presented at Microprocessor Forum 21 Years Ago

i
| November 25, 2002 (>~ POF Vorsion
Oata in (8b x 2)

New NEC Array Speeds Data

NEC Introduces Its Dynamically Reconfigurable 512-Processor
Array

Flag Write

By Max Baron

Guess Who He is*

Digital media and communications are in their infancy. Most of their development
and deployment readmaps are still in the future, but they promise te become an
indispensable part of everyday life. For computer architects, the new applications
represent both challenges and rewards. The workloads are data intensive and
require performance levels that are often impractical to implement with general-
purpose processors. Challenge and opportunity are engenderning specialized
architectures that are competing for a chance to show their might and enjoy a
slice of revenues that may rival those of the PC market. Two years ago, in Japan, .
01' MNEC's research team started looking at an interesting engine that could be used in - ;
the new applications. Data_out (8b)
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Long Story, Hmm

20
On October 16, 2002, at the annual Microprocessor Forum, Masa Motomura, an
architect at NEC's System ULSI Development Division, unveiled details of the company's new massively : : ; '
parallel architecture, a dynamically reconfigurable processor (DRP). The new architecture can be used as a Figure 1 Simplified block diagram of NEC's
network processor or as a DSP engine in applications requiring high performance. ?Ifocezs"'}‘g el /
e, which can

Aside from the usual multiwindowed programmer interface, NEC's compiler
offers graphic views of the scheduled dataflow graph and the scheduled state-
transitions diagram. Place and route-determined connections are also
displayed to help in analyzing critical-path delays. The programmer can assign
a critical-path delay to be used by the high-level synthesis program. The
program will divide the implementation into multiple states to fit within the
cntical-path-delay budget. It is expected that the visual display of information
could help in speeding up place-and-route work but will be of limited use in
programming and debugging complex code. The DRP has been provided with
internal logic to help debug programs.

used as a pipq
flow-through d|

The DRP is not the first-ever massively parallel engine, nor will it be the last, but the innovative features that 'n§1IUC1'0r‘S fo
set it apart really demand a second look. Three notable features stand out from the rest. To begin with, most units also hold
amays are designed as network processors or as DSP engines; the DRP can perferm both functions. It can PE.
also pinch-hit as a semiefficient, but working, general-purpose processor.

Second, NEC's architects have created an architecture that can change its array configuration on a cycle-by-
cycle basis, making these changes indistinguishable, timing-wise, from instructions. Most other designs
have defined longer-reconfiguration delays that work best if the resulting interconnections are kept fixed for
the duration of a thread.

Finally, the DRP applies a different solution to the propagation delays that must be taken into account as
data moves across the chip. Where most other architectures are synchronizing units via clocked registers
and processing elements (PE), the DRP can define multiple propagation paths to become one pipe stage—a
small asynchronous engine walled between clocked registers to make it cooperate with other parts of the
armay.

DRP Brings Together Three Powerful Concepts

The DRP in Action

PE Architecture Supports Flow-Through Data

Figure 1 shows the DRP's byte-wide processing element, which consists of a data-management unit (DMU) System designers must be able to take advantage of the chip's most prominent
and an ALU designed to operate on 8-bit and 1-bit data. The DMU can execute 25 instructions that include features' app“cabi“ty beyond digital signal processing. one-cyde datapath
inversion, shifting, masking, and constant generation, using 8-bit and 1-bit operands. A special command . e
named WIRE is used to cause the DMU tfo pass the operand unchanged to the PE's outputs. The ALU can Masa. Motoml'lfa of NEC Change~ and dataflow. NEC's architects have endowed the PE with capabilities
execute 23 arithmetic/logic instructions on 8-bit data and can use a carry propagation path to process data unveiled details about that can support general data-intensive processing, but they had to add eight
that s wider than 8 bis. Like the DMU, the ALUhas 2 WIRE command. DRP at MPF 2002. 32-bit multipliers to meet DSP needs such as could be encountered in high-end

Photo by Ross Mehan. image processing. NEC's compiler provides a seamless environment for writing
code aimed at PEs and multipliers.




DRP Features Tiled CGRA Architecture

“am | em | mem | mem_

CGRA: Coarse Grained Reconfigurable Array

|

Processing Element (PE)
mByte-oriented ALUs

mByte-width X/Y buses and registers
mSeveral tens of configuration sets

State Transition Controller (STC)

mControls “dynamic reconfiguration”

o ] o [

Data Memory (Mem)
mDual port
mSingle port

Single Tile

/\

16b Multiplier (MPY)




Execution Model (1): Spatial Mapping

Example: 3x3 Filter
for(i=0;1i<N;i++){
for(j =0;j < N; j++){
f@i, j) = 5*(i, j) - f(i, j-1) - f(i-1, j)
- f(i+1, j) - (i, j+1);

Source Code
in C-langage

1.Generates a HW configuration
context from the source code

1 o
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control

2.Spatially maps onto the array
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Execution Model (2): Temporal Sequencing

Source Code High-Level ’
in C-lan Synthesis based on Switch among several
' ten xts

CWB* Tool &
> Comp Technology Mapping

*CWB: CyberWorkBench

Reconfiguration time:

Finite state machine
(FSM) + datapath

Hidden behind datapath operation

Mem | Mem | Mem | Mem




Putting DRP in Execution Model Landscape
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FAQ:

Is a diagram like
this a multi-core
processor or a
CGRA* Core?

The answer lies in
its execution
model

*Coarse-Grained Reconfigurable Array

DRP represents a

Spatial-then-Temporal
CGRA with FSM-

Controlled Dynamic
Reconfiguration




Putting DRP in Execution Model Landscape - In 3D

Partial-Reconfiguration
/Multi-Context
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Recent Evolution: DRP-AI for Neural Networks

Memory  DRP: Wide-Purpose CGRA AI -Engine: MAC-Memory Array Renesas RZ/V2M with DRP-Al Wins 2020

Input Data b PE e Local Me’“°'y Aspencore’'s World Electronic Achievement Award
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Now used Iin Renesas’s MCU/MPU products.
Total shipment of DRP chips is still rapidly expanding!




DRP-AI Demo & Its New Gen. Exposure at ISSCC 2024

SESSION 20 Wednesday, February 21%, 8:00 AM

Machine Learning Accelerators
Power Performance

Session Chair:  Chia-Hsiang Yang, National Taiwan University, Taipei, Taiwan

Com pari son Session Co-Chair: Ji-Hoon Kim, Ewha Womans University, Seoul, Korea
16 8:00 AM
— 20.1 NVE: A 3nm 23.2TOPS/W 12b-Digital-CIM-Based Neural Engine for
; 14 13 5 High-Resolution Visual-Quality Enhancement on Smart Devices
S M-E. Shih*', S-W. Hsigh*", P-Y. Tsai*', M-H. Lin', P-K_ Tsung', E-J. Chanyg', J. Liang
0 S-H. Chang', C-L. Huang’, Y-Y. Mian’, Z. Warr, S. Kumar, C-X. Xue', G. Jedhe",
8 12 H. Fujiwara’, H. Mor?, C-W. Chen', P-H. Huang', C-F. Juan®, C-Y. Chen', T-Y. Lin',
— C. Wang’, C-C. Chen’, K. Jour
(O] '"MediaTek, Hsinchu, Tawan
8 10 ‘MediaTek, San Jose, CA
TTSMC, Hsinchu, Taiwan
©
E 8 g *Equally Credited Authors (ECAs
5 W 8:25 AM
= 6 % 20.2 A28nm 74.34TFLOPS/W BF16 Helerogenous CIM-Based Accelerator
© 5.0 il Exploiting Denoising-Similarity for Diffusion Models
(a E ﬁ-" R. Guo', L. Wang', X Char', M. Sun'. Z Yue', Y. Qin', H. Har', Y. Wang', £ T\F
— 4 L. S Wer, Y M, S Y
) Tsinghua University, Beljing. China
% G P U D RP-AI "Hong Kong Lv‘m'.v.'.fs’ﬂy of Science and Technofogy, Hong Kong, China
2
al 550 AM
20.3 A23.9TOPS/W @ 0.8V, 130TOPS Al Accelerator with 16x Performance-
0 Note: Accelerable Pruning in 14nm Heterogeneous Embedded MPU for Real-
TinyYOLOV2 - The benchmark uses the power consumption of the entire board and inference time Time Robot Applications
without pre and pOSt process. K. Nose. T. Fui, K. Togawa, S. Okumura, K. Mikami, D. Hayash, T. Tanaka, T. Tof
. . . Renesas Electronics, Tokyo, Japan
® GPU E DRP-AI - Measured by Batch size=1 and FP16 Quantization.
- TensorRT7 is applied for Competitor A measurement.




DRP: Early-Coming/Ever-Evolving in SDH/SDC Movement

@-‘*‘-“'-"-‘-‘-f‘”**-~~-' e oms o oo | % Softyware Defined Hardware/Chip

accen?ure Accenture Labs

Software Defined Hardware (SDH)
Dr. Al Reshavary
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[ Dynamic HW/SW compilers for high-level languages (TA2) |

DRP’s Spatial-then- Temporal Processing Style
Lead me to the Structure-Oriented Computing Concept






Al’'s Energy Problem

Al Technology is Now Omnipresent in Our Society

Generative Al Smart Autonomous Smart Social
for Text/Image Robotics Drones Infrastructure

- Serious Concern -

Its energy consumption and environmental impact




What Do We Know About It?

Generative Al's Energy Problem Today Is

Published on April 5, 2023 In Endless Origins Foundational > Before Al can take over, it will need to
find a new approach to energy

CO2 Equivalent Emissions (Ton
Source: Luccioni et al,, 2022; Struboell et al,, 20%9 | Ch

GPT-3 (1758)

Gopher (280B)

The Environmental Impact
of LLMs

OPT (175B)

Car, Avg. Incl. Fuel,

1 Lifetime
BLOOM (1768) GPT-3 produced carbon emissions equivalent to 500 times the
s emission of that of a New York-San Francisco round trip flight. ’
i ok W o dcTBehind b ponuliardfichlineellioence TAD chatbor Char G
Human Life,
Avg., 1 Year

Simply, Way Too Much

Air Travel,
1 Passenger, NY-SF

(AI Index Report 2023) Accorc?ing'to St.anfor.d's Artificial Intclligcx‘\'c‘; Ind.cx, it toollt the cc!ui\ »
“A single LLM interaction may consume as much power
as leaving a low-brightness LED lightbulb on for one

hour.”
—Alex de Vries, VU Amsterdam

As the researchers calculated, this is the equivalent of the lifetime emissions of 8 cars

— or 109 cars’ yearly emissions — and enough energy to power an average U.S.

home for over 120 years. Of the four models that the report scrutinized, GPT-3

lsaving a low-brightness LED lightbulb on for one howr™
—Alax de Vriez, VU Amsterdam

(IEEE Spectrum 2023)

released the most emissions and required the most power consumption.

(Stanford Report 2023)




And --- What We Can Do About It?

INTRODUCES

B Sem ni ®

— It is already an unrealistic option —

ChatGPT Burns Millions Every Day. Can
Computer Scientists Make Al One Million
Times More Efficient?

Hence ..

We Should Make AI Computing
Several Orders of Magnitude
More Energy Conscious — e

Soiiiiniert | (Forbs 2023)




But, How?

Answer: Interplay Among Algorithm-Architecture-Real Chip

S
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(Ex: NN Model)
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Observation: AI Computing Landscape

It is All About How to Handle Large-Volume Inputs and Outputs

o Traditional ML o Discrete Optimization

o) Deep NeuralNets I‘/"\ nrAnneaIing Computation
I','

o Reservoir Computing o Graph Processing

N T~ ————— [\

Classify Detect Recognize Predict Generate Recommend Decision Make




Al Computing: Driven by Energy Minimization Principle

Deep NeuralNets: DNNs
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Annealing Computation

Mapping

Design the Energy
Funciton by Back
Propagation

Traverse the
Energy Surface and
Find a Minimum

Traverse the
Energy Surface and
Find a Minimum

Our Goal: Establishing Common
Parallel Architectural Ground

for those workloads




Architectural Shifts from Sequence to Structure

Conventinal: Sequence-Oriented

Newly Rising: Structure-Oriented

Control-Flow Processing
Von Neumann Processor

peoy |eAoy
Qwil buoi

- Program a Sequence
- Serial in its nature

Paradigm
I Shift

93uanbas
uononJIisul

g J

- : A '
Traditional Computing E?c??)?ﬂgf

Data-Flow Processing
Reconfigurable HW

Manual
Re-wiring

»[ ALU .

_ UOI}NJOAT JUDDY

Al Computing



Analogy: bit Dangerous yet Potentially Useful

Left Right
Logical-Arithmetical Braivv 4

= Brousv Intuitive-Spatial
Information Processing RAY

e Linear
. [.f.-*%_}t\clz
o Sequential
o Analytical *

Sequence-Oriented .« Objective
Computing is Efficient

R« Lreadinve

« Emotional

o Inbwitive .

. Subjective Structure-Oriented
Computing is Efficient

(Pinterest)

Far beyond Energy Efficiency
of human brain on such
computing tasks

Can Exceed human brain’s
energy efficiency by
architectural innovation

[Left Brain]
Sequence-Oriented Engine I Structure-Oriented Engine

[Right Brain]

Toward Robust and Efficient AT Computing Platform

Information Processing



Real World Example: Tenstorrent

5 RISC-V processors that controd

2 NoCs, Compute engine. L1 memc

@ Bno

( ¢ e |

’——_——————-N
eoNg

[Left Brain] [Right Brain]
Sequence-Oriented Engine Structure-Oriented Engine

Mix of Sequence-Structure Strategy Depends on Each Architecture
Finding the best mix—on each side—is the heart of architecture design




DNN Chips
Showcase: AI Computing Chips of Our Own  Annealing Chips

o Binary/Ternary DNN Accelerator 65nm
m Presented at the VLSI Symposium 2017

o Log-Quantized DNN Accelerator with 3D-Integrated SRAM 40nm
m Presented at the ISSCC 2018

o Fully-Connected Fully-Parallel Digital Annealing Engine 65nm
m Presented at the ISSCC 2020

o Shift-Oriented Cartesian-Product Array DNN Inference Accelerato/ 4onm
m Presented at the Hot Chips 2021

o | Fixed-Random-Weight DNN Inference Accelerator 40nm
m Presented at the ISSCC 2022

o Metamorphic Annealing Engine for Fully-Connected Models 40
= Presented at the ISSCC 2023 nm

o Progressive-bitwidth DNN Inference Accelerator 40nm

m Presented at the VLSI Symposium 2023



Lottery Ticket Hypothesis

(Lottery Ticket Hypothesis\
[J. Frankle+, ICLR 2019]

Existence of subnetworks

Dense Trained Random Sparse T e )
Network Networl?< | %%O

O ONO, S\
© e
: 27T

- d OEquivaIentO O O Oﬂ?*_?__d

O O inference O O -
Accuracy

How do we find?




Hidden Networks (HNNs): Strong Lottery Ticket Theory

[J. Frankle+, ICLR 2019]

Existence of subnetworks

Dense Trained Random Sparse

Network Network
- O
gdg C_O O O O
{ogopoiudiofonch
guivalent
Inference O O
Accuracy

How do we find?

(Lottery Ticket Hypothesis\

(

Hidden Network (HNN)

[V. Ramanujan+, CVPR2020]

Algorithm to find a subnetwork!

Edge-popup algorithm

Score

ETop—k% A

’\/// Supermask
'AND‘I

\. o cS O ‘Weight

L —

Not update weights but scores

N

Gradient




HNN Utilizes Fixed Random Weights

———— Inference Model

= Fixed at initial random numbers 5upe}m§k§§;
© Weights are no longer variables [Welg\ht 2L >AND >

but are (random) constants

O O{O
Eorward

Accuracy on HNN
- [%] R (ResNet50, ImageNet)

m Binary weights{ , +1} show 70

- 60
better accuracy than multi-bit . - B O

WeightS Binary Weight Multi-bit Weight
[V. Ramanujan+, CVPR2020]

. Freq. 4 Freq. 4
© Enhance computation A e

efficiency | 1, fyﬁi\f\,

-c Value +c Value

Accurac




HNN Needs a Supermask

m A supermask is binary {0, 1}
Information for selecting
connections

© A supermask provides
the trade-off between
accuracy and sparsity

e
Supe(

Inference Model

Ty

Weigh

Eorward

~
ol

ResNet50, HNN, ImageNet

Accuracy
o ~
o1 O

Top-30%

Trade-off
\

0
0 20 40 60 80 100,
Top-k% of Weights
Sparser model




Key Contributions of This Work

The first HNN inference chip,
Hiddenite: & B

Hidden Network Inference Tensor Engine

1. On-chip weight generation

Q °
S ,@+§8 -

Inference Model

For

® eliminates the need for
storing and loading weights

2. On-chip supermask expansion .
® reduces the model parameters to load

3. A high-density 4D parallel processor
® improves efficiency by maximizing data re-use

[*] https://en.wikipedia.org/wiki/Hiddenite



Overall Chip Architecture

( )
Model Encoded 2. ZgL EnCOdﬁd
i upermaskK.———
Construction uPermask Supermask Expansion CTRL P
Controller (MCC) Unit (SEU) Decoded %};%%
T e ————— I — L Supermask
Memory: 1= bnel || 4DPETensor 2 7%8) -
| Barrel | 5 : = _
(AMEM) |=|(Shifter| = with 4K PEs D| Unit 3. psum
8Mb (2D BS)|=3| 16 (iCh) x 4x4 (HxW) x 16 (oCh) =3I (PPU) = Z{( Awupermask) x Weight}
""""" Ll weigm | ||t Binary*— PE is so tiny!
Seed Weight Generation 3 <
. (
Unit (WGU) ° 1. Se*ed
.... RNG OC\)-EDQQ
.......... M S S
...... L Weight - y




4D PE Tensor: Dataflow

Su(lerbrn?sk \ \ _____ Nes iChs

4D PE Tensor PE Y?Ctor ............. i SMaskWeight
T s T
4 — -
(1 PE|[] PE(] PE|(] PE [| PE || PE Q
-
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g = oF e o 1 O O O Inversion
n ><< Vectqr Vectqi] |..... Vectqr
of 2 ; . 8 s
=g —— = v \+/ J v
16 iChs T PE PE PE {
\ | Vector Vector Vector 16
PSUM

Weight N\ @ N\ o 16 iChs PSUM=% and Supermask) x Weight
(1. blt) \ \ \ {( up ) X Weight}



Generating RNG Seeds by Hashing

Jraining Accuracy

ResNet18, CIFAR-100, Top-30%

;g Equivalent accuracy
74
73

Xorshiftle
PyTorch Random Hashed

J Default Seed Seed
Data Size for Weight*

~

RNG [¢3€8dl ] pash 4058
RNG Seed2. Hash I::ﬁﬁgyer
RNG [«2€¢43 Hash [ 1000,

Accuracy [%]

Inference Execution control params. |
p

RNG [¢3€8dll pash 4058,

RNG 288421 1a5h e

RNG [«2¢¢43 Hash (2080,

ResNet50, ImageNet
Weight Size [Mb]

Binarized Random Hashed
Weight  Seed Seed

* Supermask will be explained later

B Hashed seeds eliminate the need
to store weights without accuracy degradation



Total External Memory Access Reduction

ResNet50, ImageNet, Top-10%

S ANOAMEM
/i~:\/]\ 8Mb AMEM & Sliced Layer-Fusion
\/y -76.5%

_. On-chip _
_48.0% Weight Generation On-chip

Supermask | Construction
Expansion )

X
|
o

°]

N
o

External Memory
Access Count
|_\

O1

w/AMEM w/WGU w/SEU
+ Sliced
Layer-Fusion

B Hiddenite drastically reduces power-consuming
external memory accesses




Accuracy vs. Model Size on ImageNet

Accuracy [%]

ResNeth0

72
;‘21 Top-30%4 46% °1 70
70 % °
68 68
66 66
64
62 | 107 70% 64
60 62

0 10 20 30 40 50

VG

G1l6

5%

Top-20%

<

-60%

4__'5.1010.

©70%

0

10 20 30 40 50 60 70
Compressed model size [Mb]

B Comparable or better accuracies
B Smaller model size than binary model

® HNN (w/ distillation)

(wlo distillation) *
Binary **
® Ternary **

* [V. Ramanujan+, CVPR2020]
** [J. Faraone+, CVPR 2018]




Hiddenite Chip Summary
Micrograph

Specification Table
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Technology |TSMC 40nm CMOS (LP)
Package QFNB8O0 (48 Signal Pins)
Chip Size 3mm x 3mm

SRAM: 3.78mm?
Core Area |Logic: 0.58mm?
Total: 4.36mm?
Core Vpp 0.8-1.1V
/0 Vpp 3.3V
Gate Count | 746K Gates
AMEM: 8Mb
SRAM | ZMEN: 128Kkb

Total : 8.375Mb




Measured Results on ImageNet

TOPS/W

ResNet50 VGG16
20 700 30.0 700
" ]
t5f " ;#7550 251 © o777 1 550
:\/‘:’; : [ /; ;‘. : T 100/
10 =] 400 150 | P~y 400 op-10% —€
/g:/ ': ii/ \.QO: Top_20%
5 P 1250 75F A« 1 250
o’ - w - Top-30% —M—
0 100 0.0 100
07 08 09 10 1.1 07 08 09 10 1.1
Voltage [V] Voltage [V]

B Efficiency on ResNet50: 18.2-t0-16.0TOPS/W at 0.77V
B Maximum frequencies. 614-to-573MHz at 1.1V



What Hiddenite Has Achieved ?

B Hiddenite is the first HNN inference chip
B Drastically reduce external memory access by

® On-chip model construction

Architecture

— On-chip weight generation
— On-chip supermask expansgion
® Slice-based layer-fusion progessing

B SOTA-level computation efficiency

Algorithm

We also presented a new Strong Lottery Ticket
training algorithm at ICML 2022.

“Multicoated Supermasks Enhance Hidden Networks”

Real Chip

Hiddenite

RSl

B SOTA accuracy relative to model size by'score distillation

—

MCC SEU CTRL
AMEM||2D BS ||PE Tensor|| PPU
WGU




DNN Chips

Al Computing Chips from Our Group Annealing Chips

o Binary/Ternary DNN Accelerator —_—
m Presented at the VLSI Symposium 2017
0 Log-Quantized DNN Accelerator with 3D-Integrated SRAM —

m Presented at the ISSCC 2018

o Fully-Connected Fully-Parallel Digital Annealing Engine —
m Presented at the ISSCC 2020

o Shift-Oriented Cartesian-Product Array DNN Inference Accelerato/
m Presented at the Hot Chips 2021

o Fixed-Random-Weight DNN Inference Accelerator 40nm
m Presented at the ISSCC 2022
o Metamorphic Annealing Engine for Fully-Connected Models 40
= Presented at the ISSCC 2023 i
o Progressive-bitwidth DNN Inference Accelerator 40nm

= Will present at the VLSI Symposium 2023




Combinatorial Optimization Appears Everywhere
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. Notoriously Difficult for Present Computers




Annealing: Optimization based on Ising Models
(Inspired by Solid-State Physics)

Optimization Problem

Output : o
Finding Ground-States (i.e., Minimum Energy) of (Potentially)
Fully-Connected Ising Models

Annealing Processor

Optimal
Solution

o, : Spin (Binary Value)
Jyy ¢ Interaction Weight

State Space



Serial and Parallel Annealing Policies N FEDIINE
Traditional Method Our Proposal (ISSCC 2020)
SA: Simulated Annealing SCA: Stochastic Cellular Automata Annealing
(ﬁ Q E) £)}) © O $)))
= H
Update 1l
¥ = = = =
Update L L L L
Step #1 v ¥ .. S— % :C)l % mm
49 Update é Cg (g
#36» Update % O $)))
N step \
serial update
P 44 45 g Step #1 #2

m  SCAIl% fromcan realize O(N) times faster spin update than SA



Comparison of Annealing Algorithms

Parallel Flip Trial

Single
Flip Trial

Serial Spin Update

DA[FUthSU]

?QQQ?Q PRYYPP

Random Select

:‘.“AQ

Flip?

.

o** 6
.

N

-

-

Flip

5OOO00

\ Random: ‘Select /

L4
L4
L]
\d

000000 000000

* Stochastic Cellular Automata Annealing
** Ratio-controlled Parallel Annealing

Parallel Spin Update

SCA*

RPA**

PYYYRY  QPYPY

Flip

Through

O 00

6OO600 ;ﬁ%ﬁﬁﬁ
pp rob. £

000000 000000

2020 2023

Our Proposal



Motivation for Applying Multi-Annealing Algorithms

Example: 128-spin Ising models Compare avg. Ising energies of SA, DA, SCA, and RPA

rt
-

Fully- | M sA is better
Ba Coupled DA is better
Bl SCA is better
B RPA is better

B Tie

-1) ratio

0.8

0.6

. | Simulation settings
N ] @ #trials = 128

® #steps of each trial = 20,000
-\J

0.0 0.2 0.4 0.6 0.8 1.0

Pos. coupling (J; = +1) ratio

0.4

0.2

Neg. coupling (J;

0.0

Optimal policy depends on the Ising model (i.e., Problem to solve)
® RPA works better for the most cases
® DA is better for Ising models having many negative couplings



Amorphica: Metamorphic Annealing Architecture

[ 1 ar f | I
| Weight Memory (WMEM) Local Field Buffer A & T Buffers 3D-Matrix o Buffer| | Datapath for
I = .
. I — . : J'a single spin
ﬂ-ll-'-—-!'-—-—--pr——---——-l————_..— = = - _‘ —— ] e - = o -‘lll"| f
B | S S I IO N | i /71 i I nag | 1) LA Ax] .ZI':-M-I;LIT.L- u It 4)
. | _ [ [Cocal - ' | N-Sbi
: = | | Field . Pl pin
v, L@, [IN e, || L . " | 1 Parallel
: Ju s R N Sl AR | i 1 Processing
! clx N i2I"|(LFUs) 2 Lo
i o 3 " 1”1 Ji P <« | h, | i }
| I< | |
o D D |
. Data-path [e— From CTR i
I—» Zero-Run-Length Decoder (ZRLD) Double A Buffers I- Legend
Data«/»| ExtI/F |e»| Data Memory (DMEM) |¢—> —> Busy Sp“in F|I|ip_
DMA : Controller (CTR) Processing
Ctr —> <> Instruction Memory (IMEM) p—> <« RuUN | -
Memory

= Near Memory, Fully Spin-Parallel Architecture
m SA/DA/SCA/RPA algorithms are applied with dynamic reconfigurability
m  Very close to what Binary Neural Network (BNN) Inference Chip looks



Amorphica Chip Summary

Micrograph Specification Table
Technology TSMC 40nm CMOQOS (LP)
Package QFN8O0
Chip Size 3mm X 3mm
Core Area SRAM: 3.55mm?

Logic: 1.48mm?
Core Vpp 0.8-1.1V
1/0 Vg 3.3V
336MHz@1.1V
Max Freqency | 134MHz@0.8v
Gate Count 1.2M Gates
SRAM WMEM: 8Mb DMEM: 64Kb

IMEM: 64Kb  Total: 8.125Mb




Comparison to GPU (Nvidia RTX2080-Ti)

Time to obtain Ising energy that is 99% to the best

—_
)]
|_|10—1
0 |
E s
ot _ |
o 10771 | (RPA)(RPA)
= (RPA)(SCA) | x13 |
Q 103 | ! L
c
c
<

10~4

K2000 G22

(RPA)(RPA)

B2000

| B GPU mEE Amorphica (RPA) (DA)

x58

A2000

~ 250W

m Up to 58x speed up can be achieved, with around 1/500 power

consumption. That is, 30k times more energy efficient.




1.

Key Contributions of This Work

Parallel Annealing

AIQO 3

Algorlthm

00
) Y4

Annealing Architecture

4. Chip Implementation
and Evaluation

RPA: Ratio-controlled 2. Metamorphic, Near-Mem 3. Multi-chip Extension

Real Chip

Architecture Chip Chip
\ Ji #1 #2
NSNS I
iSpin Update [
. .Log'c . hip Chip
oj =xx loy 4 #3
tem |



Wrap Up The Two Showcases

Observation: AI Computing Landscape

@ They all feature

It is All About How to Handle Large-Volume Inputs and Outputs O Red UCEd' BitWidth

» Outpirt

Computrs

o Traditional ML o Discrete Optimization

o| Deep NeuralNet "l"‘ o ‘Annealing Computation
. %,
o Reservoir Computing »

o Graph Processln\

pd

Classify Detect Recognize Predict Generdte_ Recommend Decivion Ma . g Binary/Termary DNN Accelerator
=]

This type of architectures will
play pivotal rolls in near
future AI Computing systems

o0 Near-Memory
O Element-wise Parallel

Reconfigurable Structure-
Oriented Computing

DNN Chips

Showcase: AI Computing Chips of Our Own  Annealing Chips

= Presented at the VLSI Symposium 2017
Log-Quantized DNN Accelerator with 3D-Integrated SRAM

‘ = Presented at the ISSCC 2018

g Fully-Connected Fully-Parallel Digital Annealing Engine
= Presented at the ISSCC 2020

o Shift-Oriented Cartesian-Product Array DNN Inference Accelerator//
= Presented at the Hot Chips 2021 '

of Fixed-Random-Weight DNN Inference Accelerator
= Presented at the ISSCC 2022 =

o Metamorphic Annealing Engine for Fully-Connected Models =e=mE
= Presented at the ISSCC 2023

o Progressive-bitwidth DNN Inference Accelerator
:—V, s Presented at the VLSI Symposium 2023 e E

65nm

40nm

65nm

40nm

40nm

40nm

40nm




Vision: SoCs/SiPs for the Smart-X Society
General SoC/SiP View

SoC (System on Chip), SiP (System in
Package) for Smart-X Systems, e.qg.,

o Mobile Devices

o Mobilities

o Wearable Devices

=> Ensemble of Domain-Specific Engines

... on some common low-bitwidth

Domain Specific Cores

reconfigurable and parallel

Test . Test FPGA . FPGA architecture foundation.
\Chip_~ \Chip.~ ‘Proto ' ‘Proto

I;gzczc Izsg»zc:f ;%CZ';' AgoPiZAC This vision explains why we
value real chip implementation

Covered Not Covered -
(as opposed to using FPGAS)




Key Takeaways

Importance of the Interplay Among Algorithm-Architecture-Real Chip

~

Algorithm O O
(Ex: NN Model) InnovativeO O O

2N Algorithm O O O
O O

Workload Characteristics

\/A» Innovative

Architecture N tecturs BGE

S /

] ()
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CGRA: Past and Present

. , . Gartner Hype Cycle 2003
0 CGRA boom in late 90’s to 00’'s -

A
" - Electronic System-
| LOtS Of a Ca d e M C p rOJ eCtS a n d Level Design (Toals Embedded Programmable Logic © Less than two years
and Methodology) Light-Emitting Polymers D Two to five years
Sta rt u p S 'ﬁﬁéﬁi"ﬁgﬁgﬁz Organic Light-Emitting Dindes ® Fiveto 10 years
R econfigurahle Hardware & Morethan 10 Years

Metwor: on Chip

Pipe-Rench, Chameleon, IP-flex, etc.

m Most of them “Hyped-out” o o

Ciptical Packet
Switching

o Dynamically ﬁ e

Dense Wave Division
rduittiplexdn

ltipl Is]

. Semiconductar Intell ectual Propetty
Microeledtmo-
mechanical Sygems

Az af b ay 2003

Protein-DMA Logic

1 J——
Reco nfl g u ra b I e m Technology FPeak of Inflated Trough of Slope of Plateau of -
m Trigger Expectations Disillusionrment Enlightenment Productivity
Processor (DRP = ey
——
”. Acromym Key
HM :,’, MRAM W agnetoresistive random access memory

Sta rted by NEC’ ,‘”_ . ‘./: : :—5 RF CMOS Radio frequency complementary metakoxide semiconductor
/ DRP alone survived and continued

its growth, and is now glowing

succeeded by o N
Renesas beyond the age of 20t"!




Challenges of Full-connection Annealing Processors

L 4 .. A )
N-spin Ising model 1. Limited Flexibility

2. Limited Scalability

# coupling weights = N(N-1)




Challenges of Full-connection Annealing Processors

N-spin Ising model

# coupling weights = N(N-1)

4 .. Sy
1. Limited Flexibility

Fujitsu: Digital Annealer Our Group: ISSCC 2020

VS.
Parallel

Spin-Update

Slow Need Extra Ct

~

rl

Trade-off between speed & stability
— Which policy is Superior?




Challenges of Full-connection Annealing Processors
4 R

N-spin Ising model 1.

2. Limited Scalability

Multi-chip Distributed Annealing

Chip #1 ((1‘ Chip #2
QRO ——0QQQ0Q0V
Full-connection Large Full-connection
# coupling weights = N(N-1) d) d;etdv\;rg d) comm. cost d) gexrkd) d)
4_
E&LO

g /




